Summary of Essential Content to Prepare Students for Calculus

Statement of Purpose.

The purpose of this document is to summarize the most essential mathematical content that every student must learn in order to be successful in first- and second-semester calculus. To "learn" means to take possession of the knowledge so that the student can apply it, unprompted, in new or even unfamiliar settings.

A. Number systems and arithmetic

- 1. Understand Fundamental Properties of Numbers.
- 2. Perform Addition, Subtraction, Multiplication, Division, Exponentiation with * Integers
 - * Rational Numbers
 - * Irrational Numbers

B. Properties of expressions

- 1. Understand fundamental properties of expressions.
- 2. Perform standard factoring and expansion formulae and techniques:
 - * trinomials
 - * perfect squares
 - * difference of squares
 - * grouping
 - * and use as structural templates for arbitrary f and g.
 - * perform polynomial long division (the *Division Algorithm*)
- 3. Know laws of exponents and radicals.
- 4. Know definition and properties of logarithms.

C. Properties of equality

Know the properties of equality.

D. Solving equations

- 1. Fundamental facts/skills:
 - * Zero Product Property
 - * Square Root Property
 - * Completing the square . . . and its offspring, the "quadratic formula"
 - * The Factor Theorem
 - * The Linear Factorization Theorem
 - * Equivalence of exponents, *i.e.*, $b^x = b^y \leftrightarrow x = y$.

- 2. Equation types and their solutions:
 - * Linear can always solve.
 - * Quadratic can always solve.
 - * Higher-degree polynomial requires a bit of theory
 - * Rational
 - * Radical
 - * Exponential often requires $b^x = y \iff \log_b y = x$
 - * Logarithmic often requires $b^x = y \iff \log_b y = x$
 - * Trigonometric solutions are always periodic (if there are no restrictions)

E. Properties of inequalities

Know the properties of inequalities.

F. <u>Rectangular Coordinate Plane</u>

- 1. Vocabulary:
 - * horizontal axis ("x-axis"), vertical axis ("y-axis")
 - * quadrants I, II, III, IV
 - * ordered pair: (x, y), (a, b)
 - * origin: (0, 0)
 - * relation: Any set of ordered pairs.
 - * graph: The plotting of a relation.
 - * domain: The set of first coordinates of a relation.
 - * range: The set of second coordinates of a relation.
- 2. Know and use the Pythagorean Theorem.
- 3. Know and use the Distance formula.
- 4. Understand and use the geometry/algebra of lines in 2-dimensions:
 - * slope
 - * point/slope and slope/intercept forms for a line.
 - * parallel
 - * perpendicular

G. Functions

- 1. Know the technical concept and various formations (graphical, algebraic, etc.).
- 2. Understand what are Domains and Ranges, and be able to find them.
- 3. Perform transformations of functions:
 - * horizontal/vertical shifts
 - * stretching/compressing
 - * reflections
- 4. Be able to examine functions for symmetry.
- 5. Be able to read and construct Piecewise Functions.
- 6. Read and use the algebraic notation of functions, their operations and their compositions:

* Special structures:

- * g(x) = |f(x)|, i.e. what this particular composition produces
- * Difference Quotient
- * Average rate of change in f over an interval [a, b]

7. Understand inverse functions:

- * Understand the property "one-to-one", and what it implies.
- * Find and use the inverse of f
- * Constrast the above and its notation to the reciprocal of f

Function Families and what to know

														 _		
Function Family	Domain	Range	Graph/Shape	Continuity	Intercepts	Symmetry	Continuity	Asymptotes	Endpoint Behavior	Inverse	Division Algorithm	Avg Rate of Change	Growth/Decay	Amplitude	Period	Phase Shift
		/	/	/								./				1
Constant f(x) = k	V	V	V	V	V	V	V		٧ ز			v				
Linear f(x) = mx + b	1	1	1	V	1	1	1⁄		1⁄	1		V				
Polynomial $f(x) = ax^n +$	1	1	1	V	V	1	1		1⁄	√		V				
Absolute Value $f(x) = x $	1	1	1	√	1	1	1		1							
Square Root $f(x) = \sqrt{x}$	1	1	1	√	1	1	1		1	1		1				
Cube Root $f(x) = \sqrt[3]{x}$	1	1	1	√	1	1	1		1	1		1				
<i>nth</i> Root $f(x) = \sqrt[n]{x}$	1	1	1	V	1	1	1	1	1	√		1				
Rational Power $f(x) = x^{n/m}$	1	1	1	√	√	1	1		1	√						
Semicircle $\sqrt{b^2 - x^2}$	1	1	1	√	√	1	1		1							
Rational $f(x) = p(x)/q(x)$	1	1	1	1	1	1	1	1	1	1	1	1				
Exponential $f(x) = a^x$	1	1	1	1	1	1	1	1	1	1		1	1			
Logarithmic $f(x) = \log_b x$	1	1	1	1	1	1	1	1	1	1		1	1			
Sine $f(x) = \sin x$	1	1	1	V	1	1	1		1	1		1		1	1	1
Cosine $f(x) = \cos x$	1	1	1	1	1	1	1		1	1		1		1	1	1
Tangent $f(x) = \tan x$	1	1	1	1	1	1	1	1		1		1			1	1
Cotangent $f(x) = \cot x$	1	1														
Cosecant $f(x) = \csc x$	1	1														
Secant $f(x) = \sec x$	1	1														

8. Some Trigonometric Particulars to know

* DMS / radians

- * the Unit Circle and its role in defining trigonometric objects
- * sine and cosine values for reference angles (multiples of fragments of π)
- * Definitions for each ratio
- * A few identities:
 - * Pythagorean identities
 - * Even/odd identities
 - * Sum/difference identities for sine and cosine
 - * Double-angle identities for sine and cosine

9. Applications

- * Have experience relating and using functions and their properties in applied settings.
- * Have experience interpreting slopes as rates of changes in applied settings.

H. Geometric Formulae

- 1. Some fundamental facts and formulae that consistently appear in the use of previous topics: * Lengths
 - - * perimeters
 - * circumference
 - * Areas
 - * rectangular
 - * triangular
 - * circular
 - * Volumes
 - * rectangular box
 - * prism, or any solid with congruent cross-sections
 - * sphere