Table 1Properties of numbers

If A and B and C are algebraic or arithmetic expressions, then

1) A + 0 = A2) A - 0 = A3) $A \cdot 0 = 0$ 4) $\frac{A}{0}$ is not defined, 5) $\frac{0}{A} = 0$ 6) $A \cdot 1 = A$ 7) $\frac{A}{1} = A$ 8) $\frac{A}{A} = 1$ 9) $\frac{A}{B} = A \cdot \frac{1}{B}$

Table 2 Properties of expressions

If A and B and C are algebraic or arithmetic expressions, then

1)
$$A + B = B + A$$

2) $A - B = -(B - A)$
3) $AB = BA$
4) $\frac{A}{B}$ is not generally equivalent to $\frac{B}{A}$
5) $\frac{A}{B} = \frac{AC}{BC}$, $C \neq 0$ < Fundamental Principle of Fractions >
6) $A(B + C) = AB + AC$
7) $AB + AC = A(B + C)$

Table 3 Properties of exponents and radicals

1)
$$a^n = \underbrace{a \cdot a \cdot a \cdots a}_{n-manytimes}$$

2) $a^{n+m} = a^n a^m$
3) $a^0 = 1$
4) $a^1 = a$
5) $(a^n)^m = a^{nm} = (a^m)^n$ < student can explain why >
6) $a^{-1} = \frac{1}{a}$
7) $a^{-n} = \frac{1}{a^n}$
8) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ < student can explain why >
9) $a^{1/n} = \sqrt[n]{a}$
10) $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ Plus, 13) $\sqrt[n]{a+b} \neq \sqrt{a} + \sqrt{b}$ < unless $a = 0$ or $b = 0 >$
11) $(\sqrt[n]{a})^n = a$ 14) $(a+b)^n \neq a^n + b^n$ < unless $a = 0$ or $b = 0 >$
12) $\sqrt[n]{ab} = \sqrt{a}\sqrt{b}$ and $\sqrt[n]{a} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Table 4Properties of Logarithms

1) $\log_b 1 = 0$ 2) $\log_b b = 1$ 3) $\log_b b^x = x$ 4) $b^{\log_b x} = x$ 5) $\log_b M + \log_b N = \log_b (MN)$ 6) $\log_b M - \log_b N = \log_b (\frac{M}{N})$ 7) $\log_b (x^a) = a \log_b x$ 8) $\log_b (a) = \frac{\log_c a}{\log_c b}$

Table 5Properties of equality

If A and B and C are algebraic or arithmetic expressions, and, A = B, then

1)	A + C = B + C	< we may add the same expression to both sides >
2)	A - C = B - C	< we may subtract the same expression from both sides >
3)	AC = BC	< we may multiply both sides by the same (nonzero) expression >
4)	$\frac{A}{C} = \frac{B}{C}$	< we may divide both sides by the same (nonzero) expression >
5)	B = A	< we may interchange the two sides of the equation >

Table 6Properties of inequalities

If *A* and *B* are algebraic or arithmetic expressions with $A \leq B$, then

1) $A + C \leq B + C$	< we may add the same expression to both sides >
$2) A-C \leq B-C$	< we may subtract the same expression from both sides >
3) $AC \leq BC$, $0 < C$	< we may multiply both sides by the same (positive) expression >
4) $BC \leq AC$, $C < 0$	< with care, we may multiply both sides by the same (negative) expression >
5) $\frac{A}{C} \le \frac{B}{C}$, $0 < C$	< we may divide both sides by the same (positive) expression >
6) $\frac{B}{C} \le \frac{A}{C}$, $C < 0$	< with care, we may divide both sides by the same (negative) expression >